The distance a bullet travels to enter the lands is a topic of much concern to the precision shooter. This series takes a look at why it matters, and also when it doesn’t…
Glen Zediker
Bullet jump: the open space a bullet must span until its first point of sufficient diameter engages the barrel lands.
Last week I had a long phone conversation with a fellow who had been bitten by two bugs, two somewhat conflicting bugs (at least seemingly so on the onset). The one was a regrouping equipment project for USPSA-style practical rifle competition, and the other was for a desire to maximize accuracy, which is to minimize group size. This fellow had been involved in competition long enough to decide to stay with it, and was re-upping his AR15 upper with a new custom barrel. He wanted to have the best accuracy he could buy, and that’s a worthwhile pursuit as long as there’s a budget that supports it.
The subject of bullet jump became the dominant topic.
Yep, he had read my books and a few others and developed the impression that minimizing bullet jump was one crucial component to maximizing accuracy. That’s fair enough. I’ve gone on about it, as have others. Adjusting bullet seating depth can make a big, big difference in shot impact proximities. However! The reason bullet jump matters — usually — is largely, almost exclusively, because of some bullet profiles being more finicky than others. Namely the longer and spikier “very-low-drag” type bullet profiles.
The first point of “major diameter” on a bullet is what coincides with the land diameter in the barrel. If that’s a .22 caliber with 0.219 diameter lands, then the first point along the nosecone of a bullet that’s 0.219 is the distance. Gages that measure this distance (Hornady LNL for instance) aren’t necessarily going to provide perfect coincidence with land diameter, but still provide an accurate bullet seating depth that touches the lands.
If you find the cartridge overall length, which really means bullet seating depth, that touches the lands (coincides with land diameter) then subtract that from what you then measure when the bullet is seated deeply enough to fit into a magazine box, that right there is the amount of jump.
Dealing with an AR15, or any other magazine-fed rifle, assuming we are wanting the rounds to feed from the magazine, is that there’s a finite cartridge overall length that will fit into the magazine. So. We’re almost always going to be dealing with some amount of jump, unless one or two things can be manipulated to reduce or eliminate it.
The one is that the influence of rifle chamber specs with respect to either more or less jump is pretty much exclusively in the leade or throat. That’s the space that defines the transition from end of the chamber case neck area to entry into the lands. The closer the lands are to the chamber neck area the shorter the jump will be with any bullet. That is the leading difference between a SAAMI-spec .223 Remington chamber and a 5.56 NATO chamber. The NATO has a much longer throat. I’ve written on that one a few times…
A shorter throat has goods and bads. The main good is that, indeed, any and all bullets are going to be closer to the lands in a round loaded to magazine-length.
But the “two” in the things that influence jump is bullet selection. It is possible to find a combination that will easily have the bullet sitting right on or very near the lands at the get-go. That’s going to be a short, and light, tangent ogive bullet within a SAAMI-spec .223 Remington chamber, or (and this is what I have done) a barrel chamber finished using a throating reamer to get even closer. In general: the nearer the first point of major bullet diameter (remember, that’s the land diameter) is to the bullet tip, the shorter the jump will be, and that’s because this point is “higher.”
Throat erosion is going to lengthen the throat. Can’t stop that. The cartridge structure that was jumping, say, 0.005 on a new barrel is jumping more than that after literally every round fired through it. After some hundreds of rounds it’s jumping a few multiples of 0.005. (How much or how many is not possible to forecast because way too many factors influence the amount and rate of throat erosion. Just have to keep checking with the gage I suggest you purchase.) This is the reason I specify a custom dimension to get reduced jump: with the right hands using a throating reamer it’s easily possible to maintain land contact at magazine length seating even after a lot of rounds have gone through. Bullets will begin being seated more deeply and then get nudged out as the throat erodes.
So, where the conversation ended was this: If (and only if) someone is willing to take the time and make the effort to carefully establish and then control a reduced or eliminated amount of magazine-loaded jump then, yes, it’s a fine idea! It’s also an idea that likely will result in the best accuracy. I’ve done it in one of my AR15 match rifles, and it’s the best shooting I’ve ever owned. The hitch is that the rifle becomes what I call a “one-trick pony.” It’s not always going to accept bullets and loaded round architectures that stray from the carefully calculated dimensions originally set down. It’s also not likely going to perform safely with every factory-loaded round out there, and you can forget (totally forget) ever firing a NATO-spec round.
There’s a whopping lot more to this whole topic, and we’ll look at the other end of the spectrum next time.
The reason that reduced amounts of bullet jump increase accuracy, in a perhaps overly simple but entirely correct way to understand it, is because there’s simply less potential for disruptive entry into and lands and then through the bore. There’s less misalignment opportunity, less jacket integrity disruption opportunity. There is a lot more that can be discussed in finer points, of course…
The preceding was adapted from Glen’s newest book, Top-Grade Ammo, available here at Midsouth. For more information on this book, and others, plus articles and information for download, visit ZedikerPublishing.com